SEMINAR 6: DERIVATIVES, PART C

FINANCIAL ECONOMICS

June 2020

1. Exam June 2011

Consider an economy with two dates t = 0 & 1, with two assets: asset X and asset Y. At t = 1 there are 2 states of nature: state A and state B. The evolution of the asset prices in time and conditional on the states of nature is the following (in \in):

	t=0	t=1; state A	t=1; state B
Asset X	100	150	90
Asset Y	10	50	0

There is an organized market for both assets, thus they can be bought or sold (including short-selling) at any moment at these prices.

(a) If a new zero-coupon risk-free bond is created, with a nominal value of \in 150 and maturity at time t = 1, which would be its no-arbitrage price at t = 0?

1. Part a) solution

	t=0	t=1; state A	t=1; state B
Asset X	100	150	90
Asset Y	10	50	0
Bond	$P_B=?$	150	150

- 1. Find a replicating portfolio for the bond
 - State A: 150zX + 50zY = 150 (1) State B: 90zX = 150 (2)

From (2):
$$zX = 1.6667$$

Plugging into (1): $zY = \frac{150 - 150 * 1.6667}{50} = -2$

Replicating portfolio Z: long 1.6667 units of X and short 2 units of Y

2. Bond price equals the price of this replicating portfolio

$$P_B = 100 * 1.6667 + 10 * (-2) = 146.67$$

1. Part b)

	t=0	t=1; state A	t=1; state B
Asset X	100	150	90
Asset Y	10	50	0

(b) Suppose that a call option (of the European type) starts being traded, having as an underlying asset the asset X, with a maturity at time t = 1 and exercise price of \in 80. What will be the no-arbitrage price of the call at t =0?

1. Part b) solution

	t=0	t=1; state A	t=1; state B
Asset X	100	150	90
Asset Y	10	50	0
C _X	$P_C = ?$	70	10

- Let's describe the payoffs from this call option with strike price K = 80 in each state
- In both states S_T > K so you would use the call (buy cheap at call price, sell expensively in the market)
 - State A: buy X for 80 (strike price), sell for 150. Payoff = 150 80 = 70
 - State B: buy X for 80 (strike price), sell for 90. Payoff=90 80 = 10
- As with part a), let's construct a replicating portfolio with these payoffs and then price the option using this portfolio

1. Part b) solution

	t=0	t=1; state A	t=1; state B
Asset X	100	150	90
Asset Y	10	50	0
C _X	$P_C=?$	70	10

Replicating portfolio:

State A:

$$150zX + 50zY = 70$$
 (3)

 State B:
 $90zX = 10$
 (4)

From (4):
$$zX = 0.1111$$

Plugging into (3): $zY = \frac{70 - 150 * 0.1111}{50} = 1.0667$

Replicating portfolio Z: long 0.1111 units of X and 1.0667 units of Y

Option price equals the price of this replicating portfolio

 $P_C = 100 * 0.1111 + 10 * 1.0667 = 21.778$

1. Part c)

	t=0	t=1; state A	t=1; state B
Asset X	100	150	90
Asset Y	10	50	0
C _X	22	70	10

- c) Assume that the call from part b) is traded in the market at a price of € 22. Discuss if there is an arbitrage opportunity or not. If there is, specify into detail an arbitrage strategy (specify which assets – and in what quantities – you would buy and sell, counting with the assets X and Y) as well as the payoffs or cash-flows of this strategy in each date and state of nature
- ▶ We know the call is too expensive relative to its no-arbitrage price of 21.778, which we derived in part b)
- Arbitrage strategy: short call, long replicating portfolio

1. Part c) solution

c) Assume that the call from part b) is traded in the market at a price of € 22. Discuss if there is an arbitrage opportunity or not. If there is, specify into detail an arbitrage strategy (specify which assets – and in what quantities – you would buy and sell, counting with the assets X and Y) as well as the payoffs or cash-flows of this strategy in each date and state of nature

	t=0	t=1; state A	t=1; state B
Long RP: 0.11X + 1.67Y	-21.778	70	10
Short C_X	22	-70	-10
Payoff	0.22	0	0

Arbitrage strategy

1. Part d)

	t=0	t=1; state A	t=1; state B
Asset X	100	150	90
Asset Y	10	50	0
Call, K=80 (C_X)	21.778	70	10
Put, K=80 (P_X)	$P_P=?$	0	0

- d) What will be the no-arbitrage price at t = 0 of a European put option, if that put option has as underlying asset, asset X, a maturity of t = 1 and an exercise price of 80€? Compute the risk-free interest rate in this economy and check whether put-call parity holds. (Use as actualization factor this one: (1 + r)^{-T}).
- Let's first note the payoffs from the put in each state. They are zero!
- You would never exercise this put because you can always sell at a higher price
- So the price of the put is also zero, P_P = 0 (if you like, think of this as the cost of the replicating portfolio with zero positions in X and Y)

1. Part d) solution

	t=0	t=1; state A	t=1; state B
Asset X	100	150	90
Asset Y	10	50	0
Call, K=80 (C_X)	21.778	70	10
Put, K=80 (P_X)	0	0	0

- d) What will be the no-arbitrage price at t = 0 of a European put option, if that put option has as underlying asset, asset X, a maturity of t = 1 and an exercise price of 80€? Compute the risk-free interest rate in this economy and check whether put-call parity holds. (Use as actualization factor this one: (1 + r)^{-T}).
- We know that $P_B = 146.67$. So the risk-free rate is

$$r = \frac{150 - 146.67}{146.67} = 0.0227 = 2.27\%$$

Put-call parity:

$$\underbrace{21.778}_{c} + \underbrace{\frac{80}{1.0227}}_{K/(1+r)^{T-t}} = 100 = \underbrace{0}_{p} + \underbrace{100}_{S_{t}}$$

1. Part e)

	t=0	t=1; state A	t=1; state B
Asset X	100	150	90
Asset Y	10	50	0
Long Future F_X	0	150-F	90-F

- e) Compute the price of a futures contract on one unit of asset X with maturity of 1 year.
- Spot-forward parity:

$$F_X = S_{X,0}(1+r) = 100 * 1.0227 = 102.27$$

2. Exam September 2012.

Consider a one-period economy (dates t = 0 and t = 1) in which initially there are two assets (asset X and asset Y). At t = 1 the economy can be in either two states of nature (state A and state B). The probability of each state is 0.5. The evolution of the prices of these two assets over time conditional on the states of nature is the following:

	t=0	t=1; state A	t=1; state B
Asset X	100	130	90
Asset Y	10	30	0

There is an organized market for both assets where they can be sold and purchased (short-selling is also allowed) at any point in time at the prices quoted above.

a) If a riskless zero-coupon bond is created with a face value of \in 100 and maturity at t = 1, what would be its no-arbitrage price?

	t=0	t=1; state A	t=1; state B
Asset X	100	130	90
Asset Y	10	30	0
Bond	$P_B = ?$	100	100

Replicating portfolio for the bond:

State A:
$$130zX + 30zY = 100$$
(5)State B: $90zX = 100$ (6)

From (6):
$$zX = 1.1111$$

Plugging into (5): $zY = \frac{100 - 130 * 1.1111}{30} = -1.4815$

Replicating portfolio Z: long 1.1111 units of X and short 1.4815 units of Y

Bond price equals the price of this replicating portfolio

 $P_B = 100 * 1.1111 + 10 * (-1.4815) = 96.30$

	t=0	t=1; state A	t=1; state B
Asset X	100	130	90
Asset Y	10	30	0
Call C _X	8	30	0

- b) Suppose that a European CALL option on asset X is created; its time to expiration is one year from now and its exercise price is €100. The call is currently trading in the market at €8. Discuss whether there is an arbitrage opportunity or not. If so, describe an arbitrage strategy detailing the assets and also the amounts you would buy and sell.
- ► To determine the no-arbitrage price, let's compute the state-contingent payoffs for *C*_X and construct a replicating portfolio
- Payoffs are max[130 100, 0] = 30 in State A and max[90 100, 0] = 0 in State B
- The replicating portfolio is asset Y! So unless $P_C = P_Y$, there is arbitrage

2. b).

	t=0	t=1; state A	t=1; state B
Short Y	10	-30	0
Long Call C_X	-8	30	0
Payoff	2	0	0

• $P_C < P_Y$. So the call is too cheap.

Arbitrage strategy: long call, short Y. Make a profit of 2 today at zero cost in the future 2. c).

	t=0	t=1; state A	t=1; state B
Asset X	100	130	90
Asset Y	10	30	0
Call C_X K=100	10	30	0
Put P _X K=100	$P_P = ?$	0	10

- c) Suppose that a European CALL option on asset X is created; its time to expiration is one year from now and its exercise price is \in 80. Obtain its payoffs at t = 1 and its current theoretical price.
- Payoffs are max[130 80,0] = 50 in State A and max[90 80,0] = 10 in State B
- Solving for the replicating portfolio:

State A:

$$130zX + 30zY = 50$$
 (7)

 State B:
 $90zX = 10$
 (8)

From (8):
$$zX = 0.1111$$

Plugging into (7): $zY = \frac{50 - 130 * 0.1111}{30} = 1.1852$

Theoretical price: 0.1111 * 100 + 1.1852 * 10 = 22.96

2. d).

	t=0	t=1; state A	t=1; state B
Asset X	100	130	90
Asset Y	10	30	0
Call C_X K=100	10	30	0
Put P_X K=100	$P_P = ?$	0	10

- d) What is the price of no arbitrage in t = 0 of an European PUT on asset X with one year to expiration and exercise price of $\in 100$?
- From part a), we can calculate r and use the put-call parity:

$$r = (100 - 96.3)/96.3 = 0.0384$$
$$\underbrace{10}_{C_X} + \underbrace{\frac{100}{1.0384}}_{K/(1+r)^{T-t}} = P_X + \underbrace{100}_{S_0}$$
$$P_X = 6.3$$

▶ Note: another way to solve this is to construct a replicating portfolio of zX = 0.11 and zY = -0.48, and work out the price of this portfolio

Consider a one-period economy with two dates, t=0 and t=1, and two states of nature, s=1 and s=2. At t=0, it is possible to buy asset X whose price is 116 and whose payoff at t=1 can be 120 euros (s=1) or 100 euros (s=2). It is also possible to borrow or lend over one year at a rate of 2%. A call option on X, with maturity in one year and strike price K= 110 euros has a price of 8 euros. Explain if there is an arbitrage opportunity and if so, describe in detail the arbitrage strategy and the cash-flows in each period (t=0 and t=1).

	t=0	t=1; state 1	t=1; state 2
Asset X	116	120	100
Bond	1/1.02 = 0.98	1	1
Call C_X K=110	8	10	0

Payoffs of the call option are: max[120 - 110, 0] = 0 in state 1 and max[100 - 110, 0] = 0 in state 2

	t=0	t=1; state 1	t=1; state 2
Asset X	116	120	100
Bond	1/1.02 = 0.98	1	1
Call C_X K=110	8	10	0

Solving for the replicating portfolio:

 State A:
 120zX + zB = 10 (9)

 State B:
 100zX + zB = 0 (10)

(10) from (9):
$$20zX = 10 \Rightarrow zX = 0.5$$

Plugging into (10): $zB = -100zX = -50$

- No-arbitrage price: $P_C^{NA} = 0.5 * 116 50 * 0.98 = 9$
- Actual price: $P_C = 8 < P_C^{NA}$

The call is too cheap. Arbitrage strategy: long call, short replicating portfolio

	t=0	t=1; state 1	t=1; state 2
Short Z: Short 0.5 X, long 50x Bond	9	-10	0
Long Call C _X K=110	-8	10	0
Payoff	1	0	0

- The call is too cheap. Arbitrage strategy: long call, short replicating portfolio Z
- This strategy gives a profit of $\in 1$ today at zero cost in the future

Suppose a stock that pays no dividend is traded in the market at price $S_0 = 100 \in$. The one-year risk-free interest is 1%. If a futures contract on the stock is traded at $102 \in$, explain if there is an arbitrage opportunity and if so, describe in detail the arbitrage strategy and the cash-flows in each period (t=0 and t=1).

First, we work out the no-arbitrage price of the future using the spot-forward parity:

No-arbitrage price: $F^{NA} = S_0(1 + r) = 100 * 1.01 = 101$

- Actual price $F = 102 > F^{NA} = 101$. The future is too expensive.
- Arbitrage strategy: short future, borrow at r to buy stock

		. 1
	t=0	t=1
Position 1:		
Buy stock	-100	S_1
Borrow PV of 102	102/1.01 = 100.99	-102
Total Position 1	2	$S_1 - 102$
Position 2:		
Short future	0	$102 - S_1$
Total Payoff	0.99	0

Arbitrage strategy: short future, borrow at r to buy stock

Profit of €0.99 today at zero cost in the future